# Blue Gene Project Update .

William R. Pulleyblank

August 2002





## The Blue Gene Project

- In December 1999, IBM Research announced a 5 year, \$100M US, effort to build a petaflop scale supercomputer to attack problems such as protein folding.
- The Blue Gene project has two primary goals:
  - Advance the state of the art of biomolecular simulation.
  - Advance the state of the art in computer design and software for extremely large scale systems.
- In November 2001, a partnership with Lawrence Livermore National Laboratory was announced.

## Blue Gene Project components

- Two cellular computing architectures
  - ▶ Blue Gene/L
  - Blue Gene/C (formerly Cyclops)
  - ► Blue Gene/D variation on BG/L
  - (Blue Gene/P petaflop machine)
- Software stack
  - Kernels, host, middleware, simulators, OS
  - Self healing, autonomic computing
- Application program
  - Molecular dynamics application software
  - Partnerships, external advisory board

## Blue Gene/L



### Blue Gene/L - The Networks

65536 nodes interconnected with three integrated networks



#### 3 Dimensional Torus

- Virtual cut-through hardware routing to maximize efficiency
- 1.4 Gb/s on all 12 node links (total of 2.1 GB/s per node)
- Communication backbone
- 67 TB/s total torus interconnect bandwidth

#### Global Tree

- One-to-all or all-all broadcast functionality
- Arithmetic operations implemented in tree
- 2.8 Gb/s of bandwidth from any node to all other nodes
- Latency of tree traversal less than 2usec



#### Ethernet

- Incorporated into every node ASIC
- Disk I/O
- Host control, booting and diagnostics

### Blue Gene: a family of systems

#### Blue Gene/L

- ► Half rack: 512 nodes 1.5/2.9 TF/s; 128 GB DDR
- ► Full rack: 1024 nodes 2.9/5.7 TF/s; 256 GB DDR
- **>** ...
- ► 64 racks: 64K nodes 180/360 TF/s; 16 TB DDR

#### Blue Gene/D

- ► Similar to BG/L
  - 2.5x DDR
  - higher I/O capability

## Opportunities/Challenges

#### Significant opportunities:

- Lower price/performance ratios
  - Current SP systems ~ 10,000 \$/GFLOPS
  - BG/L ~ 140 \$/GFLOPS (hardware cost only)
- Lower floorspace/performance ratios
  - Cellular architectures use 10-100x less sqft/GFLOPS than current technology
  - 1000 BG/L nodes on a single rack (2000 processors).
- Lower power/performance ratios
  - < 6 Watts/GFLOPS</li>

#### **■** Challenges:

- Distribution of application across partitioned memory
- Exploit larger compute/ memory ratios than conventional architectures
  - Current technology ~ 1 FLOPS/byte
  - BG/L ~ 10 FLOPS/byte



## System power comparison



BG/L

20.1 kW



450 Thinkpads

20.3 kW

## HPC Roadmap





## **Server Tiers for Business Apps**



- Run various components (Apache, Websphere, DB2) on different partitions of same BG/L machine.
- Investigate dynamic resource adjustment across partitions.

### 'System Software Overview

- Operating system Linux
- Compilers IBM XL C, C++, Fortran95
- Communication MPI, TCP/IP, RUDP
- Parallel File System GPFS, NFS support
- System Management extensions to CSM
- Job scheduling based on LoadLeveler
- Math libraries ESSL
- Simulators
  - Network simulator
  - System level simulator (BLSIM)



## **BG/L - Operating Environment**



# Blue Matter - a Molecular Dynamics Code

- Separate MD program into three subpackages (offload function to host where possible):
  - ► MD core engine (massively parallel, minimal in size)
  - Setup programs to setup force field assignments, etc.
  - Analysis Tools to analyze MD trajectories, etc.
- Multiple Force Field Support
  - ► CHARMM force field (done)
  - ► OPLS-AA force field (done)
  - ► AMBER force field (done)
  - ► Polarizable Force Field (desired)
- Potential Parallelization Strategies
  - ► Interaction-based
  - Volume-based
  - ► Atom-based

# Time Scales for Protein Folding Phenomena

| phenomenon               | System/size w/solvent            | time<br>scale | time step<br>count |
|--------------------------|----------------------------------|---------------|--------------------|
| beta hairpin<br>kinetics | $\beta$ -hairpin/ 4000 atoms     | 5μsec         | 10**9              |
| peptide thermo.          | $a$ -helix, $\beta$ -hairpin/400 | 0.1-1μs       | 10**8              |
| protein thermo.          | 60-100 res./<br>20-30,000        | 1-10µs        | 10**9              |
| protein kinetics         | 60-100 res./<br>20-30,000        | 500μsec       | 10**11             |

## **Simulation Capacity**



- → 1 rack Power3 ('01)
  → 40\*512 node BG/L partition (4Q04)
- → 512 node BG/L partition (2H03) → 1,000,000 GFLOP/second (2H06)

### **External Interactions**

#### System

- ► LLNL all phases
- Columbia architecture and system
- TU Vienna FFT for BG/L
- ► U Barcelona multithreaded programming models
- **>** ...

#### Science

- ► First Blue Gene Protein Science workshop held at San Diego Supercomputer Center, March 2001
- Second Blue Gene Protein Science workshop held at the Maxwell Institute, U. of Edinburgh, in March 2002
- Collaborations with ORNL, Columbia, UPenn, Maryland, Stanford, ETH-Zurich, ...
- Blue Gene seminar series has hosted over 25 speakers at the T.J. Watson Research Center
- ► Blue Gene Applications Advisory Board formed with 15 members from the external scientific and HPC communities.

# Blue Gene Project Update .

William R. Pulleyblank

August 2002



